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Thermodynamics of the quantum Perk–Schultz model∗
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Germany

Received 8 July 1996, in final form 31 October 1996

Abstract. The quantum mechanical analogue of the classical Perk–Schultz model is considered
which comprises the Uimin–Sutherland model and the integrablet–J chain. The quantum
transfer matrix of these systems is established and the eigenvalue equations are obtained by
an algebraic Bethe ansatz. Only the largest eigenvalue is needed for the calculation of the
free energy of the quantum chain at finite temperature. The Bethe ansatz equations for the
leading eigenvalue are transformed into a set of integral equations for some appropriately defined
auxiliary functions. Furthermore, the eigenvalue of the quantum transfer matrix is expressed
in terms of these functions. The integral formulation allows for taking the limit of infinite
Trotter–Suzuki number analytically. The low-temperature limit of the free energy is obtained
analytically and for intermediate temperatures numerical results are presented.

1. Introduction

In [1] a new method for the treatment of thermodynamics of integrable one-dimensional
quantum-mechanical models has been introduced. In contrast to the traditional method [2],
which is based on a direct evaluation of the partition function by taking into account all
energy levels of the system, the new approach makes use of the well known relationship
between one-dimensional quantum mechanical and two-dimensional classical systems. Via
a Trotter–Suzuki mapping the finite-temperature partition function of the quantum spin
chain is mapped onto the partition function of a classical inhomogeneous system, which
can be expressed in terms of the eigenvalues of a so-called quantum transfer matrix. The
free energy of the quantum chain for arbitrary temperatures can be related to the largest
eigenvalue of this matrix, while correlation lengths of the system can be expressed in terms
of the next-largest eigenvalues. This concept has been applied successfully to spin-1

2 chains
as well as to the Hubbard model [3–5].

In this paper we study the quantum mechanical analogue of the classical Perk–Schultz
model, which was introduced as an integrable multi-component generalization of the six-
vertex model [6]. The transfer matrix of this model was diagonalized in [7] and the
corresponding Hamiltonian limit was studied in [8] leading to a whole family of integrable
one-dimensional systems. It turns out that several interesting fermionic models are contained
in this family, among them an anisotropic generalization of the supersymmetrict–J model
[8, 9] and the Essler–Korepin–Schoutens model [10]. Here we generalize the algebraic
Bethe ansatz method from [7] to an inhomogeneous system and thus find an equation for
the eigenvalues of the quantum transfer matrix. For the particularly interesting case of a
three-component system we transform the equations for the largest eigenvalue into a system
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0305-4470/97/061897+16$19.50c© 1997 IOP Publishing Ltd 1897



1898 A Klümper et al

Figure 1. Variables around a vertex.

of nonlinear integral equations, from which the low-temperature behaviour of the free energy
of the corresponding quantum chains can be calculated. We also present numerical results
for the free energy at arbitrary temperatures of one particular quantum chain.

2. The classical model and its Hamiltonian limit

We consider a square lattice with periodic boundary conditions. Each bond of the lattice is
occupied by a variable taking on values 0, . . . , q−1. The only allowed arrow configurations
are such that the values of the two variables on the lower and left-hand bond of a vertexα

andµ are the same as those of the variables on the upper and right-hand bondsβ and ν
(cf figure 1). This implies that only 2q2− q of theq4 Boltzmann weightsRµναβ are nonzero
and these are conveniently parametrized as

Rαααα(v) = sinh(η + εαv)/ sinhη

Rµµαα (v) = εαµ sinhv/ sinhη

Rµααµ(v) = exp(sign(α − µ)v)
(1)

with

εα = ±1 εαµ = εµα = εαεµ α, µ = 0, . . . , q − 1. (2)

The weights (1) satisfy the Yang–Baxter equations [11] which implies that the row-to-row
transfer matrices

T βα (v) =
∑
µ

N∏
i=1

R
µiµi+1
αiβi

(v) α = {α1, . . . αN }, . . . (3)

form a commuting family. At the pointv = 0, whereT (v) reduces to the right-shift operator,
the Hamiltonian limit of the classical model can be obtained by taking the logarithmic
derivative of the transfer matrix

H = d

dv
{ln[T (v)]}|v=0 =

N∑
i=1

hi (4)

where the matrix elements of the local Hamiltonianhi are given by

(hi)
αα
αα = εα cothη (hi)

αµ
µα = εαµ/ sinhη (hi)

µα
µα = sign(α − µ). (5)

The Hamiltonian (5) can be interpreted as describing a system of particles withf fermionic
andb = q − f bosonic degrees of freedom. Forf = q − 1 one recovers the ‘generalized
t–J models’ of [8]. In particular forq = 3 andε1 = ε2 = 1, ε3 = −1 one finds in the
isotropic limit (η→ 0) the supersymmetrict–J model [12], for generalη the integrablet–J
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chain with anisotropic interactions [9], forε1 = ε2 = ε3 = 1 the Uimin–Sutherland model
[13, 14], and forq = 4 and ε1 = ε4 = 1, ε2 = ε3 = −1 the Essler–Korepin–Schoutens
model [10].

3. Derivation of the quantum transfer matrix

As mentioned before the essential ingredient of our treatment of the thermodynamics of the
Hamiltonian (5) is a mapping of the partition function at finite temperature onto the partition
function of a classical model on an inhomogeneous lattice. In contrast to the solid-on-solid
and eight-vertex models, which were treated in [3] and [4], there exists only one value of the
spectral parameter at which the Hamiltonian limit of the transfer matrix (1) can be taken. It
is therefore necessary to consider a second family of transfer matricesT (v) obtained from
(3) by substituting the rotated weightsR(v) given by

R
µν

αβ (v) = Rαβνµ(v) (6)

for R(v). ObviouslyT (0) is the left-shift operator and the Hamiltonian obtained by taking
the logarithmic derivative ofT (v) at v = 0 is againH . To summarize we have

T (−v) = TRe−vH+O(v
2)

T (−v) = TLe−vH+O(v
2)

(7)

and consequently

[T (−β/N)T (−β/N)]N/2 = e−βH+O(1/N). (8)

The partition function of the Hamiltonian can now be written as

Z = lim
N→∞

Tr[T (−β/N)T (−β/N)]N/2. (9)

Thus, the partition function of the quantum chain at finite temperature is given by the
partition function of an inhomogeneous Perk–Schultz model with alternating rows. For
the calculation of this partition function the usual row-to-row transfer matrix (given by the
square bracket in (9)) is not very useful as it obviously does not possess a gap between the
largest and the next-largest eigenvalue in the limitN → ∞. From this point of view the
column-to-column transfer matrix (quantum transfer matrix) is best adapted. For this and
the interchangeability of the limitsN →∞ and chain lengthL→∞ the reader is referred
to [1, 15]. The quantum transfer matrix may be rewritten as a row-to-row transfer matrix
of the form

T βα =
∑
µ

N/2∏
i=1

R
µ2i−1µ2i
α2i−1β2i−1

(u)R̃
µ2iµ2i+1
α2iβ2i

(−u) (10)

with u = −β/N , and

R̃
µν
αβ (v) = Rβαµν (−v) (11)

where the additional minus sign has been introduced for later convenience. Due to the fact
thatR(v) and R̃(v) satisfy the Yang–Baxter equations

Rλbµc(v − v̄)Xbλ
′

αa (v)X
cµ′
aα′ (v̄) = Xµcαa(v̄)Xλbaα′(v)Rbλ

′
cµ′(v − v̄) (12)

with X = R or R̃, and thesameintertwinerR(v − v̄), the quantum transfer matrixT can
be embedded into a commuting family, namely

T (v) =
∑
µ

N/2∏
i=1

R
µ2i−1µ2i
α2i−1β2i−1

(v + β/N)R̃µ2iµ2i+1
α2iβ2i

(v − β/N) (13)
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(i.e. T (0) = T ), so the integrability of the model is preserved. The free energy per site is
f = −1/β limL→∞ lnZ/L, where first the limitN →∞ has to be taken and thenL→∞.
We are allowed to interchange these limits due to the theorems in [15]. Standard reasoning
then yields

f = − 1

β
lim
N→∞

ln3max (14)

where3max denotes the largest eigenvalue ofT (0). The next-leading eigenvalues give the
correlation lengths at finite temperature

1

ξ
= − lim

N→∞
ln

∣∣∣∣ 3

3max

∣∣∣∣ . (15)

However, the evaluation of the correlation lengths will be the subject of a future paper as
the additional technical means would go far beyond the scope of the present work.

4. Eigenvalues of the quantum transfer matrix

Our aim in this section is to diagonalize the inhomogeneous transfer matrix (13). The
homogeneous variant of this problem was solved in [7] using an algebraic Bethe ansatz.
Here we will show how in the inhomogeneous case elementary (i.e. one-particle) excitations
above a reference state can be constructed by this method. The results found in this way
can be generalized to the general (n-particle) case.

We define the elements of the monodromy matrixL(v) by an alternating product ofR
and R̃:

Lβλ
′

αλ (v) = Rλµ2
α1β1

(v + u)R̃µ2µ3
α2β2

(v − u) . . . RµN−1µN
αN−1βN−1

(v + u)R̃µNλ′αNβN
(v − u) (16)

such that

T βα (v) = Trλ[Lβα(v)] ≡
∑
λ

Lβλαλ(v). (17)

From the Yang–Baxter equations (12), one finds for the elements of the monodromy matrix

Rλbµc(v − v̄)Lλ
′
b (v)Lµ

′
c (v̄) = Lcµ(v̄)Lbλ(v)Rbλ

′
cµ′(v − v̄). (18)

From now we will focus on the caseq = 3. If we take the ‘Ńeel state’|12〉 = |1212. . .12〉
as a reference state, we find that the action of the monodromy matrix on this state is given
by

L(v)|12〉 =
(
α1(v)|12〉 ∗ ∗

0 α2(v)|12〉 0
0 ∗ α3(v)|12〉

)
(19)

with

α1(v) = [R11
11(u+ v)R̃22

11(u− v)]N/2
α2(v) = [R22

11(u+ v)R̃11
11(u− v)]N/2

α3(v) = [R33
11(u+ v)R̃22

33(u− v)]N/2.
(20)

This shows that|12〉 is an eigenstate ofT (v) with eigenvalue
∑

i αi(v). Two further
sets of eigenstates can be constructed by acting with the ‘creation operators’L3

1 andL2
3,

respectively, i.e. we consider the states

|91(v1)〉 = L3
1(v1)|12〉 and |92(w1)〉 = L2

3(w1)|12〉. (21)
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Using the relations (18), one finds that these two states are indeed eigenstates of the transfer
matrix T (v) with eigenvalues

31(v) = R11
11(v1− v)
R33

11(v1− v)
α1(v)+ R

22
33(v − v1)

R22
11(v − v1)

α2(v)+ R
33
33(v − v1)

R33
11(v − v1)

α3(v)

32(v) = R33
11(v − w1)

R22
11(v − w1)

α1(v)+ R
22
22(v − w1)

R22
33(v − w1)

α2(v)+ R
33
33(w1− v)
R22

33(w1− v)
α3(v).

(22)

The parametersv1 and w1 can be found from the requirement that Res31(v = v1) =
Res32(w = w1) = 0. We state that the general eigenvalue equation forT (v) is given by
the analytic function

3(v) =
∏
i

R11
11(vi − v)
R33

11(vi − v)
∏
j

R33
11(v − wj)
R22

11(v − wj)
α1(v)+

∏
i

R22
33(v − vi)
R22

11(v − vi)
∏
j

R22
22(v − wj)
R22

33(v − wj)
α2(v)

+
∏
i

R33
33(v − vi)
R33

11(v − vi)
∏
j

R33
33(wj − v)
R22

33(wj − v)
α3(v)

= {sinh[η + ε1(u+ v)]ε12 sinh(u− v)}N/2/ sinhN η
∏
i

sinh[η + ε1(vi − v)]
ε13 sinh(vi − v)

×
∏
j

ε13

ε12
+ {ε12 sinh(u+ v) sinh[η + ε2(u− v)]}N/2/ sinhN η

×
∏
i

ε32

ε21

∏
j

sinh[η + ε2(v − wj)]
ε32 sinh(v − wj)

+{ε13 sinh(u+ v)ε32 sinh(u− v)}N/2/ sinhN η
∏
i

sinh[η + ε3(v − vi)]
ε13 sinh(v − vi)

×
∏
j

sinh[η + ε3(wj − v)]
ε32 sinh(wj − v) . (23)

In appendix D we indicate how this procedure can be generalized to the caseq > 4.

5. Nonlinear integral equations

We rewrite the eigenvalue equation (23) (after substitutingv→ iv for convenience)

3(v) = λ1(v)+ λ2(v)+ λ3(v) (24)

with

λ1(v) = q1(v + iε1η)

q1(v)
φ−(v − iε1η)φ+(v)

λ2(v) = q2(v − iε2η)

q2(v)
φ−(v)φ+(v + iε2η)

λ3(v) = q1(v − iε3η)

q1(v)

q2(v + iε3η)

q2(v)
φ−(v)φ+(v)

(25)

and

φ±(v) =
(

sin(v ± iu)

sinη

)N/2
q1(v) =

N/2∏
i

sin(v − vi) q2(v) =
N/2∏
j

sin(v − wj).
(26)
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The parametersvi andwj have to be determined from the equations

λ1(vi) = −λ3(vi) and λ2(wj ) = −λ3(wj ). (27)

This implies that the functions

L1(v) = q1(v)

q2(v)

(
1+ λ3(v)

λ2(v)

)
and L2(v) = φ+(v)

q1(v)

3(v)

λ1(v)
(28)

are analytic and non-zero in the vincinity of the real axis—a fact that plays an important
role in the analysis of the eigenvalue equation (24) (cf appendix A).

It turns out that the largest eigenvalue of the quantum transfer matrix in the limit
N →∞ is described by four complex-valued functionsai(x), i = 1, . . . ,4, which satisfy
a set of non-linear integral equations

ln ai(x) = −βψi(x)+
4∑

j=1

[Kij ∗ lnAj ](x) i = 1, . . . ,4 (29)

where [f ∗ g](x) = ∫ f (x − y)g(y) dy. The nonlinearity of the system (29) is due to the
conditionAi(x) = 1+ai(x). The form of the inhomogeneitiesψi(x) and the kernelsKij (x)
depends on the particular grading, i.e. the choice of the parametersεα in (2). In any case
the kernelK(x) satisfies the symmetry property

Kij (x) = Kji(−x). (30)

The eigenvalue of the quantum transfer matrix can be expressed in terms of theAi functions
as (see appendix B)

ln3(0) = 30+ 1

2π

4∑
i=1

∫ π/2

−π/2
ψi(x) lnAi(x) dx (31)

where the temperature dependence is entirely contained in the integral over the auxiliary
functions. ExpandingK(x) andψ(x) in Fourier series

K(x) = 1

π

∞∑
k=−∞
k even

K(k)eikx

ψ(x) = 2
∞∑

k=−∞
k even

ψ(k)eikx

(32)

we find for the(+,+,+) grading

K(k > 0) = 1

1+ eηk + e2ηk


1 −1− e2ηk −e2ηk e2ηk

−1− eηk 1 −eηk eηk

−eηk −e2ηk 1 −1
eηk e2ηk −1 1


K(−k) = KT(k)

ψ(k) = 1

1+ eηk + e2ηk
(e2ηk, eηk, eηk + e2ηk, 1)

(33)

and

30 = β
[

cothη − 4
∞∑
k=0
k even

e−ηk

1+ eηk + e2ηk

]
. (34)
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For the (+,+,−) grading the functionsK(x) andψ(x) can be calculated explicitly and
we find

K11(x) = K33(x) = K44(x) = K34(x) = 0

K12(x) = 1

π
[f (x + iη)− f (x)] = K13(x) = −K14(x)

K22(x) = 1

π
[−f (x + iη)− f (−x + iη)]

K23(x) = 1

π
[−f (x + iη)− f (−x)] = K24(x)

ψ1(x) = 2[f (x)− f (x + iη)]ψ2(x) = 2[f (x + iη)+ f (−x + iη)]

ψ3(x) = 2[f (x)+ f (−x + iη)ψ4(x) = 2[f (−x)− f (−x + iη)]

(35)

with

f (x) = 1

1− e2ix
(36)

and

30 = β cothη. (37)

Lastly we want to mention that it is possible to study the thermodynamics of the quantum
chains under consideration also in the presence of certain external fields such as a chemical
potentialµ coupling to the particle number and a magnetic fieldh coupling to the spin. This
leads to a modification of the quantum transfer matrix by a boundary condition depending
on µ andh (cf [4]). As a consequence the eigenvalue equation (24) now reads

3(v) = eβ(µ+h)λ1(v)+ eβ(µ−h)λ2(v)+ λ3(v) (38)

which accounts for additional constant termsCi on the right-hand side of the integral
equations (29), namely

Ci = [h(1, 0, 1,−1)+ µ̃(−1, 2, 1,−1)] (39)

whereµ̃ = µ/3 for the(+,+,+) grading andµ̃ = µ for the(+,+,−) grading. In addition
30 has to be substituted with30+ β(µ+ h) everywhere.

6. Low-temperature behaviour

Next study the low-temperature thermodynamics of the three-state quantum Perk–Schultz
model. For low temperatures (β → ∞) and finiteη (corresponding to a non-vanishing
mass gap) the right-hand side of (29) is dominated by the first term, and therefore we have
to first order inT

ln ai(x) = −βψi(x). (40)

Inserting this in (31), expanding the logarithm, and using (14) gives

f = e0− 1

πβ

∫ π/2

−π/2
ψ(x)e−βψ(x) dx (41)

wheree0 = −30/β denotes the ground state energy. For both gradings the integrals in (41)
can be evaluated in a saddle point approximation, yielding

f = e0− (πT /2)1/2
4∑
i=1

ci(T ) (42)
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where for the(+,+,+) grading

ci(T ) = εi0

(εi1)
1/2

e−βε
i
0, i = 1, . . . ,4 (43)

with

εi0 =
∑

k even
(−)k/2ε(k) εi1 = −

∑
k even

(−)k/2k2ε(k)

ε(k) = 2

1+ eηk + e2ηk
(eηk, eηk, eηk/2+ e3ηk/2, eηk)

(44)

and for the(+,+,−) grading

c1(T ) = c4(T ) = 0

c2(T ) = 1

1+ e−2η
e−2β/(1+e−2η)

(
cosh3 η

sinhη

)1/2

c3(T ) = 1

1+ e−η
e−2β/(1+e−η)

(
cosh3 η/2

sinhη/2

)1/2

.

(45)

Finally we want to comment on the isotropic limit (η → 0). Here the relevant equations
have a different mathematical structure to those in the anisotropic case reflecting the different
physical behaviour of the model which becomes critical in the isotropic limit. We find (cf
appendix C) for the(+,+,+) grading (Uimin–Sutherland model)

f =
(
− 1+ 2

∫ ∞
0

e−k

1+ ek + e2k
dk

)
− T

2

2
. (46)

This is of the form predicted by conformal field theory [16, 17]

f = e0− πc
6v
T 2 (47)

wherev = 2π/3 is the sound velocity andc = 2 the central charge of the underlying field
theory [18]. Numerical results for the free energy and specific heat at arbitrary temperatures
are shown in figure 2. Note the linear temperature dependence at low temperatures in
accordance with the analytic results. Furthermore, the specific heat shows a maximum and
a shoulder at intermediate temperatures. This structure is due to the elementary excitations
of the system. There are two such excitations [13, 14] with the same velocity, but different
‘bandwidths’, hence different characteristic temperatures.

For the(+,+,−) grading (t–J model) we find (cf [19])

f = −1− β−3/2 1

π

∫ ∞
−∞

ln(1+ e−x
2
) dx. (48)

The fact that no terms ofO(1/β) turn up in this expansion can be explained by the fact that
the chemical potential in thet–J Hamiltonian we investigate here is equal to the lower edge
of the band. Therefore the ground state is the vacuum, and the elementary excitations obey
a dispersion lawε(k) ∼ k2, which accounts for theβ−3/2 dependence of the free energy for
low temperatures. A more detailed study of thet–J chain at arbitrary temperatures will be
published in [19].
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Figure 2. (a) Free energy of the isotropic Uimin–Sutherland model. (b) Specific heat of the
isotropic Uimin–Sutherland model

7. Conclusion

We have studied the thermodynamics of the quantum Perk–Schultz model. We have
introduced an appropriately defined quantum transfer matrix. By algebraic Bethe ansatz
methods we have derived the corresponding eigenvalue equation. For the largest eigenvalue
of the three-component system we have transformed these equations into a set of nonlinear
integral equations. We have studied the low-temperature behaviour of the free energy of
both thet–J and the Uimin–Sutherland model analytically. For the latter model we have
presented numerical results for the free energy and the specific heat at arbitrary temperatures.

There are several questions related to the material presented in this paper which are
currently under investigation. First we want to calculate the free energy of thet–J model
for arbitary temperatures. We are also interested in studying the excited states of the
models under consideration in order to obtain information about the correlation lengths at
finite temperatures. Finally we want to take a closer look at the structure of the algebraic
Bethe ansatz forq > 4 and derive information about the thermodynamics of the model in
this general case.
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Appendix A

Here we give a detailed account of the derivation of the system of integral equations (29).
We define the following auxiliary functions:

a1(v) = λ3(v)

λ2(v)
a2(v) = [a1(v)]

−1

a3(v) = λ1(v)

λ2(v)+ λ3(v)
a4(v) = [a3(v)]

−1
(A.1)

and related functions

Ai(v) = 1+ ai(v). (A.2)

Obviously,a1 anda2 (a3 anda4) are reciprocal. However, these functions will be used in
different regimes of the complex plane, which are separated by singularities, namely the
numbersvi andwj . These numbers form curved lines in the complex plane, which come
close to the real axis near the origin. The functionsA1 andA3 (A2 andA4) will be used
above (below) these lines. In terms of these auxiliary functions we can write the functions
(28) as follows:

L1(v) = q1(v)

q2(v)
A1(v) = q1(v)

q2(v)

A2(v)

a2(v)

L2(v) = φ+(v)
q1(v)

A3(v)

a3(v)
= φ+(v)
q1(v)

A4(v).

(A.3)

As mentioned in the text these functions are analytic and non-zero in the vicinity of the
real axis. For each of the two functions we have given one representation which is valid
in the upper analyticity region and one which is valid in the lower analyticity region. The
equations (A.1) and (A.3) constitute six relations for the functionsa1, . . . , a4, q1, q2, which
can be solved in terms ofA1, . . . , A4. The strategy is to Fourier transform the logarithm of
these equations, eliminate theq functions between them, and obtain the transforms of lnai
in terms of lnAj . Here we are working with (non-zero) analytic functionsf (x) which are
π -periodic. Hence, the logarithm lnf (x) admits a Fourier series in the form

ln f (x) = nix +
∞∑

k=−∞
f (k)e2ikx n ∈ N. (A.4)

As the functionsφ+(v) and φ−(v) have zeros close to the real axis their logarithms are
described by two different sets of Fourier coefficients in the upper and lower analyticity
regions:

lnφ± =


−N

2
iv + φ+±(0)+

∞∑
k=1

φ+±(k) Im(v) > 0

N

2
iv + φ−±(0)+

0∑
k=−∞

φ−±(k) Im(v) < 0.

(A.5)

with

φ+±(0) = −
N

2

[
ln(2 sinη)+ π

2
i ± u

]
φ−±(0) = −

N

2

[
ln(2 sinη)− π

2
i ∓ u

]
φ+±(k) = −

N

2
e∓2u/k φ−±(k) =

N

2
e∓2u/k.

(A.6)
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Analogously we have for the functionsq1(v) andq2(v)

ln qi(x) =


−i
N

2
x +

∞∑
k=0

q+i (k)e
2ikx Im(v) > 0

+i
N

2
x +

0∑
k=−∞

q−i (k)e
2ikx Im(v) < 0.

(A.7)

The Fourier representation of lnAi(x)

lnAi(x) =
∞∑

k=−∞
Ai(k)e

2ikx (A.8)

will be used only in the upper (lower) analyticity region for the casesi = 1, 3(i = 2, 4).
Inserting these Fourier series into the definitions (A.1) and the equations (A.3) we get for
generalk the following six equations:

a1(k) = eηε3kq
−ε3
1 (k)− q+1 (k)+ e−ηε3kq

ε3
2 (k)− eηε2kq

−ε2
2 (k)+ φ++(k)− e−ηε2kφ

ε2+ (k)

a2(k) = −eηε3kq
−ε3
1 (k)+ q−1 (k)− e−ηε3kq

ε3
2 (k)+ eηε2kq

−ε2
2 (k)− φ−+(k)+ e−ηε2kφ

ε2+ (k)

a3(k) = −q+1 (k)+ e−ηε1kq
ε1
1 (k)− eηε2kq

−ε2
2 (k)+ q+2 (k)− φ+−(k)+ eηε1kφ

−ε1− (k)

−e−ηε2kφ
ε2+ (k)+ φ++(k)− A1(k)

a4(k) = q−1 (k)− e−ηε1kq
ε1
1 (k)+ eηε2kq

−ε2
2 (k)− q−2 (k)+ φ−−(k)− eηε1kφ

−ε1− (k)

+e−ηε2kφ
ε2+ (k)− φ−+(k)+ A2(k)− a2(k)

q+1 (k)− q+2 (k)+ A1(k) = q−1 (k)− q−2 (k)+ A2(k)− a2(k)

φ−+(k)− q−1 (k)+ A4(k) = φ++(k)− q+1 (k)+ A3(k)− a3(k).

(A.9)

This set of equations has to be analysed for both gradings and fork >,<,= 0, separately.
For example for the(+,+,+) grading we find fork > 0

a1(k) = −q+1 (k)+ e−ηkq+2 (k)+ (1− e−ηk)φ++(k)

a2(k) = −e−ηkq+2 (k)+ e−ηkφ++(k)

a3(k) = (1− e−ηk)q+1 (k)+ q+2 (k)+ (1− e−ηk)φ++(k)− φ+−(k)− A1(k)

a4(k) = −e−ηkq+1 (k)+ e−ηkφ++(k)+ A2(k)− a2(k)

q+1 (k)− q+2 (k)+ A1(k) = A−2 (k)− a2(k)

A4(k) = φ++(k)− q+1 (k)+ A3(k)− a3(k)

(A.10)

for k < 0

a1(k) = eηkq−1 (k)− eηkq−2 (k)

a2(k) = (1− eηk)q−1 (k)+ eηkq−2 (k)− φ−+(k)
a3(k) = −eηkq−1 (k)− φ−−(k)− A1(k)

a4(k) = q−1 (k)+ (eηk − 1)q−2 (k)− φ−+(k)− eηkφ−−(k)+ A2(k)− a2(k)

A1(k) = q−1 (k)+ q−2 (k)− A−2 (k)− a2(k)

φ−+(k)− q−1 (k)+ A4(k) = A3(k)− a3(k)

(A.11)
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and fork = 0

a1(k = 0) = q−1 (0)− q+1 (0)+ q+2 (0)− q−2 (0)
a2(k = 0) = q−2 (0)− q+2 (0)+ φ++(0)− φ−+(0)
a3(k = 0) = q+2 (0)− q−2 (0)− φ+−(0)+ φ−−(0)− A1(k = 0)

a4(k = 0) = q−1 (0)− q+1 (0)+ φ++(0)− φ−+(0)+ A2(k = 0)− a2(k = 0)

q+1 (0)− q+2 (0)+ A1(k = 0) = q−1 (0)− q−2 (0)+ A2(k = 0)− a2(k = 0)

φ−+(0)− q−1 (0)+ A4(k = 0) = A3(k = 0)− a3(k = 0)+ φ++(0)− q+1 (0).

(A.12)

These equations can be solved for theai(k) in terms of theAj(k), yielding

ai(k) = φi(k)+
4∑

j=1

Kij (k)Aj (k) (A.13)

with

φ(k) = 2N i sinh(ku)ψ(k) (A.14)

andψ(k) andK(k) as in (33). After applying the inverse Fourier transform (A.13) turns
into a system of integral equations for lnai(x) in terms of lnAj(x). Performing the limit
N →∞ in these equations yields (29). The grading(+,+,−) can be treated in a similar
manner.

Appendix B

In this appendix we calculate the eigenvalue of the quantum transfer matrix in terms of the
auxiliary functions (A.1). From (A.1) we see that we can write3(v) as

3(v) = q1(v + iε1η)

q1(v)
φ−(v − iε1η)φ+(v)A4(v). (B.1)

Expanding ln3(v) in a Fourier series gives

ln3(v) =
∞∑

k=−∞
3(k)e2ikx . (B.2)

Upon inserting this series in (B.1) we find

3(k) = e−ε1ηq
ε1
1 (k)− q−1 (k)+ eε1ηφ

−ε1− (k)+ φ−+(k)+ A4(k). (B.3)

As in appendix A these equations have to be analysed for both gradings, separately. For
the (+,+,+) grading we have

3(k) =


e−ηkq+1 (k)+ A4(k) k > 0

−q−1 (k)+ eηkφ−−(k)+ φ−+(k)+ A4(k) k < 0

q+1 (0)− q−1 (0)+ φ−−(k)+ φ−+(k)+ A4(k) k = 0.

(B.4)

The coefficientsφβα (k) are given in (A.6); theq±i (k) can be calculated from (A.9). One
finds

3(k) = 30(k)+
4∑
i=1

ψi(−k)Ai(k) (B.5)
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with ψi(k) as in (33) and

30(k) =


e−ηkφ+−(k)+N

sinh(ku)

k

e−ηk

1+ eηk+2ηk
k > 0

eηkφ−+(k)+N
sinh(ku)

k

e3ηk

1+ eηk+2ηk
k < 0

φ+−(0)+ φ−+(0)+ 4Nu/3 k = 0.

(B.6)

Inserting this in (B.2) yields

ln3(x) = lnφ−(x + iη)+ lnφ+(x − iη)+ 2N
∞∑
k=0
k even

sinh(ku)

k

e−ηk

1+ eηk + e2ηk
eikx

+2N
∞∑
k=0
k even

sinh(ku)

k

e3ηk

1+ eηk + e2ηk
eikx

+ 1

2π

4∑
i=1

∫ π/2

−π/2
ψi(y − x) lnAi(y) dy. (B.7)

Taking the limitN → ∞ and lettingx = 0 we find (31). The(+,+,−) grading can be
treated in a similar manner.

Appendix C

In this appendix we comment on the isotropic limit of the equations (29) and (31). In
order to perform the limitη→ 0 we have to rescale the space and momentum coordinates
according tox → ηx andk → k/η and perform the substitutionf → ηf . Both equations
retain their structure, but now the integral kernelK(x) in (29) is given by

K(x) = 1

2π

∫ ∞
−∞

K(k)eikx dk K(k) = KT(−k) (C.1)

where

K(k > 0) = 1

1+ ek + e2k


1 −ek − e2k −e2k e2k

−1− ek 1 −ek ek

−ek −e2k 1 −1
ek e2k −1 1

 (C.2)

for the (+,+,+) grading and

K(k > 0) =


0 −1+ e−k −1+ e−k 1− e−k

0 −e−k −e−k e−k

0 −1 0 0
0 1 0 0

 (C.3)

for the (+,+,−) grading. For the quantities30 andψ(x) in (31) we find

30 = β
[

1− 2
∫ ∞

0

e−k

1+ ek + e2k
dk

]
ψ(x) =

∫ ∞
−∞

(e2k, ek, ek + e2k, 1)

1+ ek + e2k
eikx dk

(C.4)
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for the (+,+,+) grading and

30 = β

ψ(x) =
(
− 1

x(x + i)
,

2

x2+ 1
,

1

x(x − i)
,− 1

x(x − i)

)
(C.5)

for the (+,+,−) grading.
The low-temperature behaviour of the free energy in the(+,+,+) case can be deduced

from the observation that the positions of the maxima of the integrands of the integral in (31)
scale like± lnβ. We are therefore interested in the asymptotic behaviour of the function
ψ(x). This can be determined by taking the limitx → ±∞ in (C.4), and noting that the
asymptotic behaviour is determined by the poles at±2π i/3, respectively

ψ(x →±∞) = 2π√
3
(e±2π i/3, 1, 1+ e±2π i/3, e±2π i/3)e∓2πx/3. (C.6)

This implies that forx = O(lnβ) we haveψ′(x) = (∓2π/3)ψ(x), and we can write the
integral in (31) as

1

2π

4∑
i=1

∫ ∞
−∞

ψi(x) lnAi(x) dx

= 3

4π2

4∑
i=1

[ ∫ 0

−∞
ψ ′i (x)(x) lnAi(x) dx −

∫ ∞
0
ψ ′i (x)(x) lnAi(x) dx

]
. (C.7)

These integrals can be further transformed by integrating by parts, inserting the integral
equation (40), and using the fact that the contributions of the kernelK cancel due to the
symmetry (30). We obtain

4∑
i=1

∫ ∞
0
ψ ′i (x) lnAi(x) dx = 1

2β

4∑
i=1

∫ ∞
0

[−βψ ′i (x) lnAi(x)+ βψ ′i (x) lnAi(x)] dx

= 1

2β

4∑
i=1

∫ ∞
0

[ln a′i (x) lnAi(x)+ ln ai(x) lnA′i (x)] dx

= 1

2β

4∑
i=1

∫ ai (∞)

ai (0)

[
ln(1+ ai)

ai
− ln ai

1+ ai

]
dai = 1

β

4∑
i=1

L+(ai(∞)) = π2

3β
.

(C.8)

We have introduced the dilogarithmic function

L+(z) = 1

2

∫ z

0

[
ln(1+ y)

y
− ln y

1+ y
]

dy (C.9)

which satisfies the functional equation

L+(z)+ L+(1/z) = π2/6. (C.10)

A similar calculation can be performed for the second integral in (C.7), and we eventually
find (46).
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Appendix D

Here we want to generalize the eigenvalue equation for the quantum transfer matrix of the
Perk–Schultz model derived in section 4 forq = 3 to the general case. For generalq the
action of the monodromy matrix on the reference state|12〉 is determined by

Lii (v)|12〉 = αi(v)|12〉 i = 1, . . . , q

Lji (v)|12〉 = 0 i 6= j, i 6= 1, j 6= 2
(D.1)

whereα1(v) andα2(v) are as in (20) and

αi(v) = [Rii11(v + u)R̃22
ii (v − u)]N/2 i > 3. (D.2)

(D.1) implies that the operatorsLj1 andL2
j with 3 6 j 6 q can be considered as creation

operators. Using the commutation relations (18) it is straightforward to establish that the
states

|ψj

1 (v
(j)

1 )〉 = Lj1(v(j)1 )|12〉 and |ψ2
j (w

(j)

1 )〉 = L2
j (w

(j)

1 )|12〉 (D.3)

are eigenstates of the transfer matrixT (v) with eigenvalues

3
j

1(v) =
R11

11(v
(j)

1 − v)
R
jj

11(v
(j)

1 − v)
α1(v)+

R22
jj (v − v(j)1 )

R22
11(v − v(j)1 )

α2(v)+
q∑
i=3

Riijj (v − v(j)1 )

Rii11(v − v(j)1 )
αi(v)

32
j (v) =

R
jj

11(v − w(j)1 )

R22
11(v − w(j)1 )

α1(v)+ R
22
22(v − w(j)1 )

R22
jj (v − w(j)1 )

α2(v)+
q∑
i=3

R
jj

ii (w
(j)

1 − v)
R22
ii (w

(j)

1 − v)
α3(v).

(D.4)

This implies that the general eigenvalue is of the form

3(v) =
[ q∏
i=3

∏
k

R11
11(v

(i)
k − v)

Rii11(v
(i)
k − v)

q∏
j=3

∏
l

Rii11(v − w(j)l )
R22

11(v − w(j)l )

]
α1(v)

×
[ q∏
i=3

∏
k

R22
jj (v − v(i)k )
R22

11(v − v(i)k )
q∏
j=3

∏
l

R22
22(v − w(j)l )
R22
ii (v − w(j)l )

]
α2(v)

+
q∑
n=3

[ q∏
i=3

∏
k

Rnnjj (v − v(i)k )
Rnn11(v − v(i)k )

q∏
j=3

∏
l

R
jj
nn(w

(j)

l − v)
R22
nn(w

(j)

l − v)

]
α3(v). (D.5)
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